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Abstract – Asynchronous circuits do not assume any quantization 

of time. Therefore, they hold great potential for logic design as 

they are free from several problems of clocked circuits. This brief 

presents a parallel single-rail self-timed adder. It is based on a 

recursive formulation for performing multi bit binary addition. 

The operation is parallel for those bits that do not need any carry 

chain propagation. Thus, the design attains logarithmic 

performance over random operand conditions without any special 

speedup circuitry or look-ahead schema. A practical 

implementation is provided along with a completion detection 

unit. The implementation is regular and does not have any 

practical limitations of high fan outs. A high fan-in gate is 

required though but this is unavoidable for asynchronous logic 

and is managed by connecting the transistors in parallel. 

Simulations have been performed using an industry standard 

toolkit that verifies the practicality and superiority of the 

proposed approach over existing asynchronous adders. 

Index Terms – Asynchronous circuits, binary adders, CMOS 

design, digital arithmetic. 

1. INTRODUCTION 

Binary addition is the single most important operation that a 

processor performs. Most of the adders have been designed for 

synchronous circuits even though there is a strong interest in 

clockless/ asynchronous processors/circuits [1]. Asynchronous 

circuits do not assume any quantization of time. Therefore, they 

hold great potential for logic design as they are free from 

several problems of clocked (synchronous) circuits. In 

principle, logic flow in asynchronous circuits is controlled by 

a request-acknowledgment handshaking protocol to establish a 

pipeline in the absence of clocks. Explicit handshaking blocks 

for small elements, such as bit adders, are expensive. 

Therefore, it is implicitly and efficiently managed using dual-

rail carry propagation in adders. A valid dual-rail carry output 

also provides acknowledgment from a single-bit adder block. 

Thus, asynchronous adders are either based on full dual-rail 

encoding of all signals (more formally using null convention 

logic [2] that uses symbolically correct logic instead of Boolean 

logic) or pipelined operation using single-rail data encoding 

and dual-rail carry representation for acknowledgments. While 

these constructs add robustness to circuit designs, they also 

introduce significant overhead to the average case performance 

benefits of asynchronous adders. Therefore, a more efficient 

alternative approach is worthy of consideration that can address 

these problems. 

This brief presents an asynchronous parallel self-timed adder 

(PASTA) using the algorithm originally proposed in [3]. The 

design of PASTA is regular and uses half-adders (HAs) along 

with multiplexers requiring minimal interconnections. Thus, it 

is suitable for VLSI implementation. The design works in a 

parallel manner for independent carry chain blocks. The 

implementation in this brief is unique as it employs feedback 

through XOR logic gates to constitute a single-rail cyclic 

asynchronous sequential adder [4]. Cyclic circuits can be more 

resource efficient than their acyclic counterparts [5], [6]. On 

the other hand, wave pipelining (or maximal rate pipelining) is 

a technique that can apply pipelined inputs before the outputs 

are stabilized [7]. The proposed circuit manages automatic 

single-rail pipelining of the carry inputs separated by 

propagation and inertial delays of the gates in the circuit path. 

Thus, it is effectively a singlerail wave pipelined approach and 

quite different from conventional pipelined adders using dual-

rail encoding to implicitly represent the pipelining of carry 

signals. 

The remainder of this brief is organized as follows. Section II 

provides a review of self-timed adders. Section III presents the 

architecture and theory behind the proposed adder. Sections IV 

and V provide CMOS implementation and simulation results 

for the proposed adder. Section VI draws the conclusion. 

2. BACKGROUND 

There are a myriad designs of binary adders and we focus here 

on asynchronous self-timed adders. Self-timed refers to logic 

circuits that depend on and/or engineer timing assumptions for 

the correct operation. Self-timed adders have the potential to 

run faster averaged for dynamic data, as early completion 

sensing can avoid the need for the worst case bundled delay 

mechanism of synchronous circuits. They can be further 

classified as follows. 
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A. Pipelined Adders Using Single-Rail Data Encoding 

The asynchronous Req/Ack handshake can be used to enable 

the adder block as well as to establish the flow of carry signals. 

In most of the cases, a dual-rail carry convention is used for 

internal bitwise flow of carry outputs. These dual-rail signals 

can represent more than two logic values (invalid, 0, 1), and 

therefore can be used to generate bit-level acknowledgment 

when a bit operation is completed. Final completion is sensed 

when all bit Ack signals are received (high). 

The carry-completion sensing adder is an example of a 

pipelined adder [8], which uses full adder (FA) functional 

blocks adapted for dual-rail carry. On the other hand, a 

speculative completion adder is proposed in [9]. It uses so 

called abort logic and early completion to select the proper 

completion response from a number of fixed delay lines. 

However, the abort logic implementation is expensive due to 

high fan-in requirements. 

B. Delay Insensitive Adders Using Dual-Rail Encoding 

Delay insensitive (DI) adders are asynchronous adders that 

assert bundling constraints or DI operations. Therefore, they 

can correctly operate in presence of bounded but unknown gate 

and wire delays [2]. 

There are many variants of DI adders, such as DI ripple carry 

adder (DIRCA) and DI carry look-ahead adder (DICLA). DI 

adders use dual-rail encoding and are assumed to increase 

complexity. 

Though dual-rail encoding doubles the wire complexity, they 

can still be used to produce circuits nearly as efficient as that 

of the single-rail variants using dynamic logic or nMOS only 

designs. An example 40 transistors per bit DIRCA adder is 

presented in [8] while the conventional CMOS RCA uses 28 

transistors. 

 

Similar to CLA, the DICLA defines carry propagate, generate, 

and kill equations in terms of dual-rail encoding [8]. They do 

not connect the carry signals in a chain but rather organize them 

in a hierarchical tree. Thus, they can potentially operate faster 

when there is long carry chain. 

A further optimization is provided from the observation that 

dual rail encoding logic can benefit from settling of either the 

0 or 1 path. Dual-rail logic need not wait for both paths to be 

evaluated. Thus, it is possible to further speed up the carry 

look-ahead circuitry to send carry generate/carry-kill signals to 

any level in the tree. This is elaborated in [8] and referred as 

DICLA with speedup circuitry (DICLASP). 

3. DESIGN OF PASTA 

In this section, the architecture and theory behind PASTA is 

presented. The adder first accepts two input operands to 

perform half additions for each bit. Subsequently, it iterates 

using earlier generated carry and sums to perform half-

additions repeatedly until all carry bits are consumed and 

settled at zero level. 

A. Architecture of PASTA 

The general architecture of the adder is shown in Fig. 1. The 

selection input for two-input multiplexers corresponds to the 

Req handshake signal and will be a single 0 to 1 transition 

denoted by SEL. It will initially select the actual operands 

during SEL = 0 and will switch to feedback/carry paths for 

subsequent iterations using SEL = 1. The feedback path from 

the HAs enables the multiple iterations to continue until the 

completion when all carry signals will assume zero values. 

B. State Diagrams 

In Fig. 2, two state diagrams are drawn for the initial phase and 

the iterative phase of the proposed architecture. Each state is 

represented by (Ci+1 Si) pair where Ci+1, Si represent carry 

out and sum values, respectively, from the ith bit adder block. 

During the initial phase, the circuit merely works as a 

combinational HA operating in fundamental mode. It is 

apparent that due to the use of HAs instead of FAs, state (11) 

cannot appear. 

During the iterative phase (SEL = 1), the feedback path through 

multiplexer block is activated. The carry transitions (Ci ) are 

allowed as many times as needed to complete the recursion. 

From the definition of fundamental mode circuits, the present 

design cannot be considered as a fundamental mode circuit as 

the input–outputs will go through several transitions before 

producing the final output. It is not a Muller circuit working 

outside the fundamental mode either as internally, several 

transitions will take place, as shown in the state diagram. This 

is analogous to cyclic sequential circuits where gate delays are 

utilized to separate individual states [4]. 

C. Recursive Formula for Binary Addition 
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Let S ji and Cji+1 denote the sum and carry, respectively, for ith 

bit at the jth iteration. The initial condition ( j = 0) for addition 

is formulated as follows: 

                                S0 i = ai  ⊕ bi 

                             C0 i+1 = aibi .                                        (1) 

The j th iteration for the recursive addition is formulated by 

     S ji = Si j−1 ⊕ Ci j−1 ,   0 ≤ i < n                     (2)                    

    C ji+1 = Si j−1 Ci j−1 ,  0 ≤ i ≤ n.                         (3) 

The recursion is terminated at kth iteration when the following 

condition is met:  

 Ckn +Ckn−1 + ・・・+Ck1 = 0,   0 ≤ k ≤ n.        (4) 

Now, the correctness of the recursive formulation is 

inductively proved as follows. 

Theorem 1: The recursive formulation of (1)–(4) will produce 

correct sum for any number of bits and will terminate within a 

finite time. 

Proof: We prove the correctness of the algorithm by induction 

on the required number of iterations for completing the addition 

(meeting the terminating condition). 

Basis: Consider the operand choices for which no carry 

propagation is required, i.e., C0 I = 0 for ∀i, i ∈ [0..n]. The 

proposed formulation will produce the correct result by a 

single-bit computation time and terminate instantly as (4) is 

met. 

Induction: Assume that Ck i+1 ≠ 0 for some ith bit at kth 

iteration. Let l be such a bit for which Ck l+1 = 1. We show that 

it will be successfully transmitted to next higher bit in the (k + 

1)th iteration. 

As shown in the state diagram, the kth iteration of lth bit state 

(Ck l+1, Sk l ) and (l + 1)th bit state (Ck l+2, Sk l+1) could be in 

any of (0, 0), (0, 1), or (1, 0) states. As Ck l+1 = 1, it implies 

that Sk l = 0. Hence, from (3), Ck+1 l+1 = 0 for any input 

condition between 0 to l bits. 

We now consider the (l + 1)th bit state (Ck l+2, SS l+1) for kth 

iteration. It could also be in any of (0, 0), (0, 1), or (1, 0) states. 

In (k+1)th iteration, the (0, 0) and (1, 0) states from the kth 

iteration will correctly produce output of (0, 1) following (2) 

and (3). For (0, 1) state, the carry successfully propagates 

through this bit level following (3). 

Thus, all the single-bit adders will successfully kill or 

propagate the carries until all carries are zero fulfilling the 

terminating condition. 

The mathematical form presented above is valid under the 

condition that the iterations progress synchronously for all bit 

levels and the required input and outputs for a specific iteration 

will also be in synchrony with the progress of one iteration. In 

the next section, we present an implementation of the proposed 

architecture which is subsequently verified using simulations. 

 

Fig.3 2X1 Multiplexer for the 1 bit adder 

4. IMPLEMENTATION 

A CMOS implementation for the recursive circuit is shown in 

Fig. 3. For multiplexers and AND gates we have used TSMC 

library implementations while for the XOR gate we have used 

the faster ten transistor implementation based on transmission 

gate XOR to match the delay with AND gates. The completion 

detection following (4) is negated to obtain an active high 

completion signal (TERM). This requires a large fan-in n-input 

NOR gate. Therefore, an alternative more practical pseudo-

nMOS ratio-ed design is used. Using the pseudo-nMOS design, 

the completion unit avoids the high fan-in problem as all the 

connections are parallel. The pMOS transistor connected to 

VDD of this ratio-ed design acts as a load register, resulting in 

static current drain when some of the nMOS transistors are on 

simultaneously. In addition to the Ci s, the negative of SEL 

signal is also included for the TERM signal to ensure that the 

completion cannot be accidentally turned on during the initial 

selection phase of the actual inputs. It also prevents the pMOS 

pull up transistor from being always on. Hence, static current 

will only be flowing for the duration of the actual computation. 

5. EXPREMENTAL RESULT 

 

Fig4 2x1 Multiplexer for the 1 bit adder 
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Fig 3,4,5,6 shows the design and output analysis of CMOS 

implementation of PASTA. 

 

F ig5 Half adder using transmission gate 

 

Fig6 Half adder using transmission gate 

6. CONCLUSION 

This brief presents an efficient implementation of a PASTA. 

Initially, the theoretical foundation for a single-rail wave 

pipelinedadder is established. Subsequently, the architectural 

design and CMOS implementations are spresented. The design 

achieves a very simple n-bit adder that is area and 

interconnection-wise equivalent to the simplest adder namely 

the RCA. Moreover, the circuit works in a parallel manner for 

independent carry chains, and thus achieves logarithmic 

average time performance over random input values. The 

completion detection unit for the proposed adder is also 

practical and efficient. Simulation results are used to verify the 

advantages of the proposed approach. 
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