
Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 6, Issue 4, April (2016)

ISSN: 2395-5317 ©EverScience Publications 74

A Low Power Single-Rail Pipelined Adder Based on

Partial Element Reuse

Anu Priyanka R

PG Scholar,Nandha Engineering college ,Erode,India.

Prabakaran G

 Assistant professor,Nandha Engineering college ,Erode,India.

Abstract – Asynchronous circuits do not assume any quantization

of time. Therefore, they hold great potential for logic design as

they are free from several problems of clocked circuits. This brief

presents a parallel single-rail self-timed adder. It is based on a

recursive formulation for performing multi bit binary addition.

The operation is parallel for those bits that do not need any carry

chain propagation. Thus, the design attains logarithmic

performance over random operand conditions without any special

speedup circuitry or look-ahead schema. A practical

implementation is provided along with a completion detection

unit. The implementation is regular and does not have any

practical limitations of high fan outs. A high fan-in gate is

required though but this is unavoidable for asynchronous logic

and is managed by connecting the transistors in parallel.

Simulations have been performed using an industry standard

toolkit that verifies the practicality and superiority of the

proposed approach over existing asynchronous adders.

Index Terms – Asynchronous circuits, binary adders, CMOS

design, digital arithmetic.

1. INTRODUCTION

Binary addition is the single most important operation that a

processor performs. Most of the adders have been designed for

synchronous circuits even though there is a strong interest in

clockless/ asynchronous processors/circuits [1]. Asynchronous

circuits do not assume any quantization of time. Therefore, they

hold great potential for logic design as they are free from

several problems of clocked (synchronous) circuits. In

principle, logic flow in asynchronous circuits is controlled by

a request-acknowledgment handshaking protocol to establish a

pipeline in the absence of clocks. Explicit handshaking blocks

for small elements, such as bit adders, are expensive.

Therefore, it is implicitly and efficiently managed using dual-

rail carry propagation in adders. A valid dual-rail carry output

also provides acknowledgment from a single-bit adder block.

Thus, asynchronous adders are either based on full dual-rail

encoding of all signals (more formally using null convention

logic [2] that uses symbolically correct logic instead of Boolean

logic) or pipelined operation using single-rail data encoding

and dual-rail carry representation for acknowledgments. While

these constructs add robustness to circuit designs, they also

introduce significant overhead to the average case performance

benefits of asynchronous adders. Therefore, a more efficient

alternative approach is worthy of consideration that can address

these problems.

This brief presents an asynchronous parallel self-timed adder

(PASTA) using the algorithm originally proposed in [3]. The

design of PASTA is regular and uses half-adders (HAs) along

with multiplexers requiring minimal interconnections. Thus, it

is suitable for VLSI implementation. The design works in a

parallel manner for independent carry chain blocks. The

implementation in this brief is unique as it employs feedback

through XOR logic gates to constitute a single-rail cyclic

asynchronous sequential adder [4]. Cyclic circuits can be more

resource efficient than their acyclic counterparts [5], [6]. On

the other hand, wave pipelining (or maximal rate pipelining) is

a technique that can apply pipelined inputs before the outputs

are stabilized [7]. The proposed circuit manages automatic

single-rail pipelining of the carry inputs separated by

propagation and inertial delays of the gates in the circuit path.

Thus, it is effectively a singlerail wave pipelined approach and

quite different from conventional pipelined adders using dual-

rail encoding to implicitly represent the pipelining of carry

signals.

The remainder of this brief is organized as follows. Section II

provides a review of self-timed adders. Section III presents the

architecture and theory behind the proposed adder. Sections IV

and V provide CMOS implementation and simulation results

for the proposed adder. Section VI draws the conclusion.

2. BACKGROUND

There are a myriad designs of binary adders and we focus here

on asynchronous self-timed adders. Self-timed refers to logic

circuits that depend on and/or engineer timing assumptions for

the correct operation. Self-timed adders have the potential to

run faster averaged for dynamic data, as early completion

sensing can avoid the need for the worst case bundled delay

mechanism of synchronous circuits. They can be further

classified as follows.

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 6, Issue 4, April (2016)

ISSN: 2395-5317 ©EverScience Publications 75

A. Pipelined Adders Using Single-Rail Data Encoding

The asynchronous Req/Ack handshake can be used to enable

the adder block as well as to establish the flow of carry signals.

In most of the cases, a dual-rail carry convention is used for

internal bitwise flow of carry outputs. These dual-rail signals

can represent more than two logic values (invalid, 0, 1), and

therefore can be used to generate bit-level acknowledgment

when a bit operation is completed. Final completion is sensed

when all bit Ack signals are received (high).

The carry-completion sensing adder is an example of a

pipelined adder [8], which uses full adder (FA) functional

blocks adapted for dual-rail carry. On the other hand, a

speculative completion adder is proposed in [9]. It uses so

called abort logic and early completion to select the proper

completion response from a number of fixed delay lines.

However, the abort logic implementation is expensive due to

high fan-in requirements.

B. Delay Insensitive Adders Using Dual-Rail Encoding

Delay insensitive (DI) adders are asynchronous adders that

assert bundling constraints or DI operations. Therefore, they

can correctly operate in presence of bounded but unknown gate

and wire delays [2].

There are many variants of DI adders, such as DI ripple carry

adder (DIRCA) and DI carry look-ahead adder (DICLA). DI

adders use dual-rail encoding and are assumed to increase

complexity.

Though dual-rail encoding doubles the wire complexity, they

can still be used to produce circuits nearly as efficient as that

of the single-rail variants using dynamic logic or nMOS only

designs. An example 40 transistors per bit DIRCA adder is

presented in [8] while the conventional CMOS RCA uses 28

transistors.

Similar to CLA, the DICLA defines carry propagate, generate,

and kill equations in terms of dual-rail encoding [8]. They do

not connect the carry signals in a chain but rather organize them

in a hierarchical tree. Thus, they can potentially operate faster

when there is long carry chain.

A further optimization is provided from the observation that

dual rail encoding logic can benefit from settling of either the

0 or 1 path. Dual-rail logic need not wait for both paths to be

evaluated. Thus, it is possible to further speed up the carry

look-ahead circuitry to send carry generate/carry-kill signals to

any level in the tree. This is elaborated in [8] and referred as

DICLA with speedup circuitry (DICLASP).

3. DESIGN OF PASTA

In this section, the architecture and theory behind PASTA is

presented. The adder first accepts two input operands to

perform half additions for each bit. Subsequently, it iterates

using earlier generated carry and sums to perform half-

additions repeatedly until all carry bits are consumed and

settled at zero level.

A. Architecture of PASTA

The general architecture of the adder is shown in Fig. 1. The

selection input for two-input multiplexers corresponds to the

Req handshake signal and will be a single 0 to 1 transition

denoted by SEL. It will initially select the actual operands

during SEL = 0 and will switch to feedback/carry paths for

subsequent iterations using SEL = 1. The feedback path from

the HAs enables the multiple iterations to continue until the

completion when all carry signals will assume zero values.

B. State Diagrams

In Fig. 2, two state diagrams are drawn for the initial phase and

the iterative phase of the proposed architecture. Each state is

represented by (Ci+1 Si) pair where Ci+1, Si represent carry

out and sum values, respectively, from the ith bit adder block.

During the initial phase, the circuit merely works as a

combinational HA operating in fundamental mode. It is

apparent that due to the use of HAs instead of FAs, state (11)

cannot appear.

During the iterative phase (SEL = 1), the feedback path through

multiplexer block is activated. The carry transitions (Ci) are

allowed as many times as needed to complete the recursion.

From the definition of fundamental mode circuits, the present

design cannot be considered as a fundamental mode circuit as

the input–outputs will go through several transitions before

producing the final output. It is not a Muller circuit working

outside the fundamental mode either as internally, several

transitions will take place, as shown in the state diagram. This

is analogous to cyclic sequential circuits where gate delays are

utilized to separate individual states [4].

C. Recursive Formula for Binary Addition

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 6, Issue 4, April (2016)

ISSN: 2395-5317 ©EverScience Publications 76

Let S ji and Cji+1 denote the sum and carry, respectively, for ith

bit at the jth iteration. The initial condition (j = 0) for addition

is formulated as follows:

 S0 i = ai ⊕ bi

 C0 i+1 = aibi . (1)

The j th iteration for the recursive addition is formulated by

 S ji = Si j−1 ⊕ Ci j−1 , 0 ≤ i < n (2)

 C ji+1 = Si j−1 Ci j−1 , 0 ≤ i ≤ n. (3)

The recursion is terminated at kth iteration when the following

condition is met:

 Ckn +Ckn−1 + ・・・+Ck1 = 0, 0 ≤ k ≤ n. (4)

Now, the correctness of the recursive formulation is

inductively proved as follows.

Theorem 1: The recursive formulation of (1)–(4) will produce

correct sum for any number of bits and will terminate within a

finite time.

Proof: We prove the correctness of the algorithm by induction

on the required number of iterations for completing the addition

(meeting the terminating condition).

Basis: Consider the operand choices for which no carry

propagation is required, i.e., C0 I = 0 for ∀i, i ∈ [0..n]. The

proposed formulation will produce the correct result by a

single-bit computation time and terminate instantly as (4) is

met.

Induction: Assume that Ck i+1 ≠ 0 for some ith bit at kth

iteration. Let l be such a bit for which Ck l+1 = 1. We show that

it will be successfully transmitted to next higher bit in the (k +

1)th iteration.

As shown in the state diagram, the kth iteration of lth bit state

(Ck l+1, Sk l) and (l + 1)th bit state (Ck l+2, Sk l+1) could be in

any of (0, 0), (0, 1), or (1, 0) states. As Ck l+1 = 1, it implies

that Sk l = 0. Hence, from (3), Ck+1 l+1 = 0 for any input

condition between 0 to l bits.

We now consider the (l + 1)th bit state (Ck l+2, SS l+1) for kth

iteration. It could also be in any of (0, 0), (0, 1), or (1, 0) states.

In (k+1)th iteration, the (0, 0) and (1, 0) states from the kth

iteration will correctly produce output of (0, 1) following (2)

and (3). For (0, 1) state, the carry successfully propagates

through this bit level following (3).

Thus, all the single-bit adders will successfully kill or

propagate the carries until all carries are zero fulfilling the

terminating condition.

The mathematical form presented above is valid under the

condition that the iterations progress synchronously for all bit

levels and the required input and outputs for a specific iteration

will also be in synchrony with the progress of one iteration. In

the next section, we present an implementation of the proposed

architecture which is subsequently verified using simulations.

Fig.3 2X1 Multiplexer for the 1 bit adder

4. IMPLEMENTATION

A CMOS implementation for the recursive circuit is shown in

Fig. 3. For multiplexers and AND gates we have used TSMC

library implementations while for the XOR gate we have used

the faster ten transistor implementation based on transmission

gate XOR to match the delay with AND gates. The completion

detection following (4) is negated to obtain an active high

completion signal (TERM). This requires a large fan-in n-input

NOR gate. Therefore, an alternative more practical pseudo-

nMOS ratio-ed design is used. Using the pseudo-nMOS design,

the completion unit avoids the high fan-in problem as all the

connections are parallel. The pMOS transistor connected to

VDD of this ratio-ed design acts as a load register, resulting in

static current drain when some of the nMOS transistors are on

simultaneously. In addition to the Ci s, the negative of SEL

signal is also included for the TERM signal to ensure that the

completion cannot be accidentally turned on during the initial

selection phase of the actual inputs. It also prevents the pMOS

pull up transistor from being always on. Hence, static current

will only be flowing for the duration of the actual computation.

5. EXPREMENTAL RESULT

Fig4 2x1 Multiplexer for the 1 bit adder

Journal of Network Communications and Emerging Technologies (JNCET) www.jncet.org

Volume 6, Issue 4, April (2016)

ISSN: 2395-5317 ©EverScience Publications 77

Fig 3,4,5,6 shows the design and output analysis of CMOS

implementation of PASTA.

F ig5 Half adder using transmission gate

Fig6 Half adder using transmission gate

6. CONCLUSION

This brief presents an efficient implementation of a PASTA.

Initially, the theoretical foundation for a single-rail wave

pipelinedadder is established. Subsequently, the architectural

design and CMOS implementations are spresented. The design

achieves a very simple n-bit adder that is area and

interconnection-wise equivalent to the simplest adder namely

the RCA. Moreover, the circuit works in a parallel manner for

independent carry chains, and thus achieves logarithmic

average time performance over random input values. The

completion detection unit for the proposed adder is also

practical and efficient. Simulation results are used to verify the

advantages of the proposed approach.

REFERENCES

[1] D. Geer, “Is it time for clockless chips? [Asynchronous processor chips],”
IEEE Comput., vol. 38, no. 3, pp. 18–19, Mar. 2005.

[2] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design.

Boston, MA, USA: Kluwer Academic, 2001.
[3] P. Choudhury, S. Sahoo, and M. Chakraborty, “Implementation of basic

arithmetic operations using cellular automaton,” in Proc. ICIT, 2008, pp.

79–80.

[4] M. Z. Rahman and L. Kleeman, “A delay matched approach for the design

of asynchronous sequential circuits,” Dept. Comput. Syst. Technol., Univ.
Malaya, Kuala Lumpur, Malaysia, Tech. Rep. 05042013, 2013.

[5] M. D. Riedel, “Cyclic combinational circuits,” Ph.D. dissertation, Dept.

Comput. Sci., California Inst. Technol., Pasadena, CA, USA,May 2004.
[6] R. F. Tinder, Asynchronous Sequential Machine Design and Analysis: A

Comprehensive Development of the Design and Analysis of Clock-

Independent State Machines and Systems. San Mateo, CA, USA: Morgan,
2009.

[7] W. Liu, C. T. Gray, D. Fan, and W. J. Farlow, “A 250-MHz wave pipelined

adder in 2-μm CMOS,” IEEE J. Solid-State Circuits, vol. 29, no. 9, pp.
1117–1128, Sep. 1994.

[8] F.-C. Cheng, S. H. Unger, and M. Theobald, “Self-timed carrylookahead

adders,” IEEE Trans. Comput., vol. 49, no. 7, pp. 659–672, Jul. 2000.
[9] S. Nowick, “Design of a low-latency asynchronous adder using speculative

completion,” IEE Proc. Comput. Digital Tech., vol. 143, no. 5, pp. 301–

307, Sep. 1996.

[10] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems

Perspective. Reading, MA, USA: Addison-Wesley, 2005.

[11] C. Cornelius, S. Koppe, and D. Timmermann, “Dynamic circuit techniques
in deep submicron technologies: Domino logic reconsidered,” in Proc.

IEEE ICICDT, Feb. 2006, pp. 1–4.
[12] M. Anis, S. Member, M. Allam, and M. Elmasry, “Impact of technology

scaling on CMOS logic styles,” IEEE Trans. Circuits Syst., Analog Digital

Signal Process., vol. 49, no. 8, pp. 577–588, Aug. 2002.

